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There has been considerable interest over the past years in investigating the role of gravity in
quantum phenomenon such as entanglement and decoherence. In particular, gravitational time
dilation is believed to decohere superpositions of center of mass of composite quantum systems.
Since true effects of gravity are encoded in the curvature of spacetime, the universality of such
a decoherence must be characterized through components of Riemann tensor Rabcd, with a clear
separation from non-inertial kinematic effects. We obtain the reduced density matrix of a composite
system in a generic curved spacetime, and express the decoherence time scale explicitly in terms of
curvature. The decoherence in an inertial frame is caused by tidal acceleration. We also analyse the
effects of self-gravity and show that the coupling of gravitational interaction with external curvature
can not be captured by the replacement m → m + Hint/c

2.

I. INTRODUCTION

The interplay between gravitation and quantum me-
chanics in extreme physical situations involving high en-
ergies and/or strong gravitational fields is typically be-
lieved to yield new physics not accessible to existing ob-
servations and experiments. However, it has become ev-
ident in the past decade or so that the interplay between
gravity and low-energy quantum systems is interesting
in its own right [1–7]. This regime can be well approxi-
mated by the framework of relativistic quantum mechan-
ics in its first quantized form on a background spacetime.
When gravity is itself treated classically, the background
spacetime can be taken as some exact solution of Ein-
stein equations which is simple enough for the analysis
to be tractable and yield analytical results. This is often
not possible, and even when it is, does not yield use-
ful insights since choice of a specific solution hides the
manner in which Riemann curvature explicitly appears
in and affects the final results. An alternative route is to
employ a suitable frame in which kinematic and curva-
ture effects can be captured cleanly in terms of physically
observable quantities. This latter approach provides re-
markable insights when used to study quantum and ther-
modynamic properties of systems in curved spacetimes,
as well as their connection with Einstein equations [8–10].
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In fact, recent work has shown that the latter approach
also has potential to yield new insights into some non-
perturbative effects of spacetime curvature on behaviour
of classical and quantum probes [11], as well as implica-
tions for curvature for the uncertainty principle at high
energies [12].

In this work, our focus will be on how spacetime cur-
vature can affect quantum mechanical properties of a
composite system. One would generically expect the two
key features of quantum mechanics and general relativity
– time dilation, and quantum superposition and entan-
glement – to play an inevitable role in such an analy-
sis. A well-known result in this context is by Pikovski
et al. [1] (hereafter PZCB), which shows that gravita-
tional time dilation will generically cause a decoherence
of the center-of-mass superpositions for a composite sys-
tem. This happens essentially because the background
metric indirectly couples the internal degrees of freedom
with the center of mass, through the total Hamiltonian,
thereby producing a reduced density matrix for the latter
that exhibits decoherence. Our aim will be to describe
this quantum decoherence directly in terms of curvature
of the background spacetime, so as to provide a clear sep-
aration between effects arising due to non-inertial nature
of the frame, from those produced due to curvature. It
is the latter that captures the true effects due to grav-
ity. To achieve this, we will introduce a fully covariant
set-up for discussing this problem, thereby removing any
ambiguities related to choice of coordinates etc.

Three main results that we establish in this work are:

1. The decoherence time scale derived in PZCB can be
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obtained purely in terms of electric part of Riemann
tensor in a given frame.

2. The magnetic part of Riemann alters the PZCB by
introducing an additional term.

3. The gravitational self-interaction itself does not
couple to the external curvature through the simple
replacement m→ m+Hint/c

2 in the point particle
Hamiltonian.

In the first part, we consider a setup similar to one
discussed by PZCB in [1], but in an arbitrary curved
background. We take the system to be a composite sys-
tem with some internal degrees of freedom in an arbitrary
background, whose center of mass degree of freedom is
in a superposition of two suitably defined position eigen-
states |x1〉 and |x2〉 at some initial time (t1 = 0 surface
in the fig 1). The internal dynamics is governed by the
Hamiltonian Hint, whose coupling to curvature is fixed by
assuming it contributes to the inertial mass as Hint/c

2.
We then follow the conventional route of computing the
density matrix at a later time, tracing over the inter-
nal degrees of freedom, and finding the reduced density
matrix for the center of mass. The interferometric Visi-
bility so obtained is reduced purely due to gravitational
effects, even when special relativistic effects are absent.
This then gives us results (1) and (2) above.

In the second part, we consider the case where the
system itself distorts the background geometry, thereby
incorporating the effect of self-gravitation. To do this,
we consider the highly simplified case of a system of two
masses, M and m, with M � m, placed in an exter-
nal curved spacetime. Assuming m to be moving in the
effective geometry corresponding to background curva-
ture + curvature due to M , we determine the coupling
of the gravitational interaction – (−GMm/r) – with the
background curvature. This coupling turns out to be dif-
ferent from the manner in which other, non-gravitational,
interactions are coupled to the inertial mass through an
application of the equivalence principle. This will be our
result (3), and we discuss its implications for the strong
equivalence principle in detail in Section III.

II. QUANTUM SYSTEMS IN CURVED
SPACETIME

To understand the curvature effects on the quantum
interference, we consider the arbitrary background with
metric gab. We adopt the Fermi normal coordinates [13]

for our ensuing discussion to demonstrate the quantum
decoherence due to gravity. We consider the system
whose center of mass is in the superposition of the two
distinct positions xα1 and xα2 where xα = −eαā (x̄)σā(x, x̄)
with (ūa(x̄), eαā (x̄)) to be orthonormal tetrad and prop-
agate on γ by Fermi-Walker transport, and σā(x, x̄) is
the gradient of the Synge’s world function σ(x, x̄) at the
base point x̄. We locate the unique spacelike geodesics
s1, and s2 pass through x1, x2, respectively those are sep-
arated by ∆s , and intersect γ orthogonally by satisfying
the relation σā(x, x̄)uā = 0. We consider the mass of
the composite system to be M , and the time evolution
of its internal degrees of freedom is governed by the in-
ternal Hamiltonian Hint. The internal Hamiltonian does
not depend on the position and momentum of COM de-
gree of freedom as it is in the different Hilbert space.
The system dynamics is governed by the Hamiltonian
Ĥ = ĤFree + Ĥint + Ĥcoupling. If ρ0 is the initial for the
whole system, the time evolution of the density matrix
will be ρt = Uρ0U

†, where U is the unitary operator.
To see the effect of gravity on quantum interference, we
start by choosing γ to be the reference curve for which
the center of mass is in the superposition of two semi-
classical paths xα1 and xα2 in spacetime with an arbitrary
metric as shown in the figure 1. Since the time evolution
of each superposed path depends on the path the system
takes by virtue of the metric that generically varies in
space, it leads to gaining which-way information for the
paths leading to decoherence. The measure of decoher-
ence is mathematically represented as the interferometric
Visibility; the value less than unity represents the loss of
quantum coherence. The expression for Visibility can be
written as

V =
∣∣∣Tr [e−i ∫ Ĥdtρ0e

i
∫
Ĥdt
]∣∣∣ (1)

where Ĥ is the total Hamiltonian, ρ0 represents the initial
density matrix for the whole system (internal ⊗ COM)
at t = 0, and Tr represents trace over all internal modes.
Substituting the expression for the Hamiltonian from the
equation A6, HFree will give a constant phase factor, so it
will not contribute to Visibility. If the internal states are
not the eigenstates of internal Hamiltonian Hint, Visibil-
ity reduces due to the termsHint+Hcoupling ≡ Hint(1+Θ)

is V =
∣∣∣Tr [e−i ∫ Ĥint(1+Θ)dtρie

i
∫
Ĥint(1+Θ)dt

]∣∣∣ . As illus-

trated, the off-diagonal terms of the reduced density ma-
trix correspond to the Visibility, which depends on the Θ
function, and Θ is dependent on the COM variable only

Θ = − ~p2

2m2c2

(
1 +

aµx
µ

c2
+
R0µ0νx

µxν

2

)
+

1

2

(
2aµx

µ

c2
+R0µ0νx

µxν
)
− 1

6
Rµ ν

α βx
αxβ

pµpν
m2c2

(2)

For simplification, we consider slowly moving particles
such as p � mc, aµx

µ � c2, and ignoring terms of the
order Rx2×(p/mc)n (n > 1) since they are of the higher
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order of smallness, we get

Θ = − ~p2

2m2c2
+
aµx

µ

c2
+
R0µ0νx

µxν

2
. (3)

The last term in Θ is the electric part of the tidal tensor
and arises due to the curved nature of background ge-
ometry. The Visibility will reduce due to the difference
between the integrated value of Θ between two superpo-
sition states |x1〉 and |x2〉 for all moments of time under

which the system dynamics runs (
∫ 2

1
(1 + Θ)dt ≡ ∆Θ)

V = |〈e
−i
~ Hint(∆Θ)〉| (4)

The Visibility expression has the following key features

1. The Visibility is unaffected if either ∆Θ = 0 or if
the system is in an eigenstate of the internal Hamil-
tonian Hint.

2. If the system is taken to be subjected by gravi-
tational potential considered by Pikovski et al.[1]
is appeared in the second term of the equation 3
i.e., aµx

µ ≈ gx. However, it is not a genuinely
gravitational contribution to the interaction, as also
pointed out by a thought experiment in [14]. Our
Visibility expression above clarifies this by separat-
ing the contributions from the accelerated frame
and gravity (tidal terms).

3. Since the proper time difference(denoted as ∆τ) be-
tween two paths plays a crucial role in the decoher-
ence, one must relate ∆Θ to ∆τ in some manner.
We write the expression for the relation between
proper time and coordinate time in the appendix
A in the equation A7. The relation between Θ and
dτ can be written as,

dτ =

(
1 + Θ +

2

3mc
R0αµβx

αxβpµ
)
dt (5)

The relation states that even though the proper
time difference between paths is zero does not guar-
antee to be an absence of gravitational decoherence
in general curved spacetime.

4. The equation 2 to 5 contains only linear term of in
aµx

µ

c2 . It justifies the results by [1] in flat spacetime
such that the velocity contributions can be ignored
or small enough to neglect more than the third or-
der in smallness. If one consider O(P 2x2) terms,
the equation 5 becomes

dτ = (1 + Θ +
p2

m2c2

(
11(aµx

µ)2

16c4

)
+

2

3mc
R0αµβx

αxβpµ)dt (6)

Though this coupling term is very tiny, saying this
kind of coupling term can be responsible for the de-
coherence phenomenon apart from the proper time
differences between the two COM superposed paths
even in the flat spacetime.

A. Curvature effect on decoherence time scale

FIG. 1: Description of a composite system (yellow
spheres) in a reference frame characterized by a time-
like curve γ (the thick red curve). The center of mass is
supposed to be in a quantum superposition of two trajec-
tories (black curves). A relational description of this sys-
tem in arbitrary curved spacetime is provided by Fermi
normal coordinates, in which the coordinates, as well as
the separation between the superposed states, measure
the deviation between the curves in a covariant manner.
(See text for details.)

It is exciting to see the effect of curvature on the deco-
herence time. For comparison purposes, we calculate the
decoherence time for the model with N internal harmonic
modes of the particle, considered by [1]. The system is at
rest in the superposition of two distinct positions xν1 and
xν2 such that xν2 − xν1 = ∆Xν . The internal degrees of
freedom are in thermal equilibrium at local temperature
T . The loss of Visibility is Gaussian decay for the limit
N(kBT∆Θ/~)2 � 1 with the decoherence time

tdec =

√
2

N

~c2

kBT (aν +R0µ0νXµ)∆Xν
(7)

where Xµ = (xµ1 + xµ2 )/2, kB is the Boltzmann con-
stant. The decoherence time tends to infinity, i.e., no
loss in Visibility, for the case when either

√
NkBT or

(aν + R0µ0νX
µ)∆Xν (or both) goes to zero.

√
NkBT

is nothing but the variance in the internal energy that
will go to zero if the internal states are the eigenstates
of the internal Hamiltonian, i.e., 〈H2

int〉 = 〈Hint〉2 and
(aν +R0µ0νX

µ)∆Xν is the difference in the proper time



4

between two paths. It is obvious from the expression
that the decoherence time scale (ignoring the contribu-
tion from the magnetic part of Riemann) is non-zero even
when aµ = 0.

We will now compare how the numerical estimate for
the decoherence time scale given by Pikovski et al. in [1]
can be rederived in terms of the Riemann tensor. This
turns out to be an interesting exercise. In [1], the idea
was to consider the system on Earth, and mimic gravity
by considering an accelerated frame of reference in flat
spacetime, with acceleration GM⊕/R

2
⊕ = 9.8 m/s2. The

decoherence time scale then evaluates to tdec ∼ 10−3 sec,
for a system at room temperature with N ∼ 1023 and
superposition size ∆x = 10−6m. However, it is more
natural in our setup to set aµ = 0 since the Earth, which
will determine our Fermi frame, is, in fact, moving on a
geodesic. We need to determine the Riemann tensor at
the center r = 0 of the Earth (which is our Fermi refer-
ence curve). If we ignore sources of curvature other than
the Earth itself, we can evaluate this curvature from some
information about the interior geometry of the Earth.
Although a general analysis can be made, it will suf-
fice for our purpose to model this as a spherically sym-
metric, constant density solution to Einstein equations
Gab = 8πGTab, given by [15]:

ds2 = −f(r)dt2 +
dr2

g(r)
+ r2dΩ2 (8)

where r is the radial distance from the center of the con-
stant density object with a total mass of M and the ra-
dius is R. The above metric satisfies the Einstein equa-
tion with f(r) and g(r) given by

f(r) =
1

4

[
3

(
1− 2GM⊕

R⊕

)1/2

−
(

1− 2GM⊕r
2

R3
⊕

)1/2
]2

g(r) =

(
1− 2GM⊕r

2

R3
⊕

)
(9)

along with the condition R > 9GM/4 necessary to obtain
a static interior solution with finite central pressure [15].
The relevant component of the Riemann tensor for this
metric that appears in the decoherence time scale is R0̂r̂0̂r̂
(frame component of Riemann tensor at the center of the
Earth) and evaluates to R0̂r̂0̂r̂ → GM⊕/R

3
⊕ as r → 0.

In fact, this is the only non-zero component at r = 0.
Assuming the system of interest to be close to the surface
of the Earth, we also have xµ1 ∼ xµ2 ∼ R⊕, and hence
Xµ = (xµ1 + xµ2 )/2 ∼ R⊕. We therefore obtain

R0̂r̂0̂r̂X
r̂ ∼ GM⊕

R2
⊕
∼ 9.8 m/s2

which precisely reproduces the estimate obtained in flat
spacetime using a ∼ 9.8 m/s2.

FIG. 2: Point mass M in an external environment with
no matter. The internal zone (depicted in Grey) is where
the gravitational field due to mass M dominates the ex-
ternal gravitational field. The external zone (Blue col-
ored region) is where the gravitational field due to mass
M is weak enough relative to external fields. The field
in the buffer zone (Green colored region) interpolates be-
tween these two. Technically, if r is the meaningful mea-
sure of distance from the point mass M and the length
scale is associated with a radius of curvatureR (Reimann
tensor of background spacetime is inversely proportional
to R2). The internal and external zones are defined by
r � R, r � M , respectively, and the buffer zone lies
between these two, where M � r � R.

III. COUPLING OF GRAVITATIONAL
SELF-INTERACTION WITH BACKGROUND

CURVATURE

To determine how the gravitational interaction it-
self couples to an external curvature, we need to know
how the geometry gets deformed by the system itself.
This is what makes the gravitational interaction differ-
ent from others, such as electromagnetic ones. While
non-gravitational interactions can be accounted for by
adding suitable interaction terms to the lagrangian, grav-
itational interaction is supposed to be incorporated in
the geometry itself, which must be determined by solv-
ing Einstein equations. The question we are interested
in, therefore the following: Does gravitational interaction
also couple to a given, background, curvature in the same
manner as, say, a point mass m? In this section, we will
attempt to address this question by considering a sim-
plified system comprising of two masses, M and m, with
M � m, in a given (external) curved spacetime. When
M = 0, Rabcd 6= 0, m will couple to the background cur-
vature Rabcd as given in Eq. 14. On the other hand, when
M 6= 0, Rabcd = 0, the gravitational interaction between
M and m is incorporated through the (free) Hamilto-
nian of m in the curvature produced by M ; that is, Eq.
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14 again with gab given by the Schwarzschild geometry
produced by M . To compute the coupling of the grav-
itational interaction between M and m with Rabcd, we
need to consider the case When M 6= 0, Rabcd 6= 0. This
is generically a hard problem in general relativity due
to it’s non-linear structure, but solutions under various
different assumptions are known.

The solution we will use derives from application of the
method of matched asymptotic expansions, dating back

to the work of Manasse [16]. Here, we will use the form
of the solution derived by Poisson in [17] by employing
retarded coordinates on the particle’s world-line at r = 0,
assuming it has no acceleration in the background space-
time, and Rab = 0 (vacuum solution). The metric so
derived will suffice for our purpose. To obtain its explicit
form in Fermi coordinates, one can use the result of [17],
and apply the coordinate transformation from retarded
to Fermi coordinates (carefully keeping track of higher-
order terms). After a lengthy set of steps, we obtain:

gtt = −1− s2E∗ +M

(
2

s
+

11

3
sE∗ − 4ME∗

)
g0µ =

2

3
s2B∗µ +M

(
− 2

s
ωµ − 2sE∗ωµ −

2s

3
Eαµωα −

4s

3
B∗µ + 4ME∗ωµ

)
gµν = δµν −

1

3
Rµανβx

αxβ +M2(
2

3
E∗µν − 4E∗ωµων) +M

(
2

s
ωµων +

1

3
sE∗ωµων +

4s

3
Eα(µων)ω

α +
8s

3
B∗(µων)

)
(10)

where

E∗ = Eµνωµων (11)

B∗α = εαβγBβµωµωγ (12)

E∗µν = 2Eµν − 4ω(µEν)αω
α + (δµν + ωµων)E∗ (13)

Eµν and Bµν are symmetric traceless tensors with Eµν =
R0µ0ν and Bδα, defined such that Rα0βγ = εβγδBδα. B∗α
and E∗µν are the combination of the electric and magnetic
parts of the Riemann tensor such that these are orthog-
onal to ωµ. The metric tensor depends on Fermi time
t through Eµν(t) and Bµν(t) and angular dependence is
encoded in ω(θA).

It is straightforward to check that the above metric re-
duces to the one in [16] when the external environment
itself is Schwarzschild geometry of a spherically symmet-
ric mass distribution. The general form above also makes
it clear that the curvature in the neighborhood of the
composite system with mass M arises due to two factors:
The Schwarzschild field of M itself, and the curvature
produced by the external environment. Einstein equa-
tions are satisfied throughout the motion.

The term that will be of interest to us will arise from
the coupled terms such as (ME∗) above. The Hamilto-
nian for a free particle of mass m (assumed to be at rest,
for simplicity) in the buffer zone (see Fig. 2) using the
relation (A4), becomes

H = mc2
(

1 +
1

2
s2E∗

)
+Hint

(
1 +

4

3
s2E∗ +

4

3
s2B∗µωµ

)
(14)

where Hint = −GMm/s is the gravitational interaction
between two bodies with masses M and m. While writ-
ing the above expression, we have used the time-time

component of the inverse deformed Fermi metric correct
upto the order M ,

gtt = −1 + s2E∗ −M
(

2

s
+

1

3
sE∗ +

8

3
sB∗µωµ

)
(15)

Note that the above Hamiltonian can be rewritten as

H =
(
mc2 +Hint

)(
1 +

1

2
s2E∗

)
+Hint

(
5

6
s2E∗ +

4

3
s2B∗µωµ

)
(16)

which is not equivalent to replacing m→ m+Hint/c
2 in

the single particle Hamiltonian, due to the second term.
It has been mentioned in the literature that such an

asymmetric coupling, for non-gravitational interactions,
is a coordinate artifact and disappears when covariance is
maintained [18, 19]. However, our analysis has been co-
variant all along, and hence the above effect is real. This
can be stated more rigorously, by noticing that the 1/r
terms that appear in the interaction Hamiltonian are al-
ready covariantly defined in terms of retarded coordinate
r:

r = [ua∇aσ]ret

We can rewrite the above Hamiltonian in retarded co-
ordinates by using the coordinate transformation given
in [20], to obtain

H = mc2
(

1 +
1

2
r2E∗

)
+Hint

(
1 +

3

2
r2E∗ +

4

3
r2B∗µΩµ

)
=
(
mc2 +Hint

)(
1 +

1

2
r2E∗

)
+Hint

(
r2E∗ +

4

3
r2B∗µΩµ

)
(17)
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where now Hint = −GMm/r is the interaction Hamil-
tonian defined using the correct, retarded, coordinate r,
and the curvature tensor(s) B∗µ(u), E∗(u) are now func-
tions of the retarded time u. Once again, the above
Hamiltonian is not equivalent to replacing m → m +
Hint/c

2 in the single particle Hamiltonian, due to the
second term.

IV. DISCUSSIONS

Amongst all interactions, the gravitational interaction
is the most ubiquitous because it is encoded in the curva-
ture of spacetime itself. Being so, it couples to everything
and operates un-shielded with an infinite range. This is
what makes the study of quantum systems in a gravita-
tional field subtle as well as interesting, yielding results
that can be as interesting as those that might come from
quantum gravity in which gravity and spacetime them-
selves are treated quantum mechanically. Ever since the
seminal work of Pikovski et al., the universal role of grav-
ity in quantum effects such as entanglement and decoher-
ence have been studied extensively. However, while re-
search along these lines continues to be active, there have
been arguments raised and issues of concept highlighted
in various discussions [14, 21–23]. In this work, our aim
was to settle some of the key amongst these issues:

1. Does the decoherence effect conflict with the equiv-
alence principle?

2. Will there be decoherence in freely falling frames?

3. Does the gravitational self-interaction Hint couple
to the external curvature through the simple re-
placement m→ m+Hint/c

2?

Our analysis settles the answer to these as (1.) No, (2.)
Yes, and (3.) No.

Most previous debates and discussions surrounding the
above questions have been based on arguments that are
qualitative, and, therefore, can not provide any insights
into the role of curvature in answering any of them. Our
results do precisely that, and in the process, we obtain
additional insights that could not have been obtained
from qualitative arguments alone.

Let us start with the role of the equivalence principle.
In fact, different versions of this principle appear in (1)
and (3) above. In (1), the essential question is whether
results in an accelerated frame can truly mimic gravity,
and/or capture curvature effects. In our opinion, analy-
sis in an accelerated frame of reference in flat spacetime
can, at best, act as an indicator of the existence of certain
phenomenon in gravitational fields, and nothing more.
Precise quantitative results in a gravitational field can
generically not be estimated/obtained by working in an
accelerated frame in flat spacetime. Although there are
examples that might be considered as exceptions, such

as the mapping between Unruh effect and Hawking ra-
diation, even in such cases, curvature might play an im-
portant role otherwise invisible to perturbative analysis,
as has been recently pointed out in [11]. In this work, it
was shown that the response of the conventional Unruh-
deWitt detector accelerating in a direction n, in a curved
spacetime, will generically have a thermal part that corre-
sponds to a temperature of T = (~/2π)

√
a2 − En (where

En = R0n0n), with no restriction on relative strength of
a and En. This is surprising since we are dealing with a
point detector (hence no tidal forces), and yet contribu-
tion of at least one component of curvature can not be
fixed by appealing to the equivalence principle. A dra-
matic illustration of this result obtains in (anti-)de Sitter
spacetimes, where the result is exact and reproduces the
known Unruh temperature in these spacetimes.

The above form of the equivalence principle is, there-
fore, operative in a very restricted sense. Such pitfalls
related to the above form of the equivalence principle
have been noted in the past, most prominently by Synge
[24]. Nevertheless, we were able to show that quanti-
tative estimates obtained using the Riemann tensor do
agree with the ones using accelerated frames in PZCB, at
least for experiments done near a spherically symmetric
source. This is a curious result that has not been noted
in the literature so far, to the best of our knowledge, and
deserves further thought.

The answer to point (2) above follows immediately
from the fact that gravitational or curvature-induced de-
coherence appears via the term R0µ0νX

µ, which is gener-
ically non-zero in any frame, including an inertial one.
In fact, it can be interpreted as the acceleration associ-
ated with deviation between two curves; for ai = 0, the
relevant curve is the geodesic γ, and the curve defined
by Xµ = (xµ1 + xµ2 )/2. We must hasten to add, how-
ever, that the curve so defined would, in general, not be
a geodesic, and hence an interpretation purely in terms
of deviation acceleration would break down. Given it’s
elegance, though, it would be interesting to pursue this
line of thought further. Furthermore, this discussion also
addresses the issue of whether the decoherence derived
by Pikovski et al. [1] is actually kinematic and can be
nullified in certain frames of reference [14]. Interestingly,
there will be no loss of coherence even for a uniformly ac-
celerated observer, such as the one considered by Pikovski
et al., when aµ is such that it exactly cancels the term
R0µ0νX

µ. To summarize, our analysis clearly identifies
that decoherence will generically exist in curved space-
time, but the decoherence time scale tdec will quantita-
tively depend on the frame of reference because (i) the
relevant curvature component R0µ0ν = Rabcdu

aebµu
cedν

depends on the frame, and (ii) the vector Xµ depends
on the choice of frame. Note that generically the compo-
nent in (i) will be non-zero in curved spacetime, while an
interesting case when the curvature term in tdec disap-
pears is in a frame in which Xµ = 0, that is xµ1 = −xµ2 .
Nevertheless, as long as the magnetic part of Riemann
is zero, and/or the momentum coupling is ignored, the
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Visibility will depend on the proper time difference of the
superposed paths, and hence frame independent.

On the other hand, the version of the equivalence
principle that appears in (3) is the strong one, which in
this case would mean that the coupling of gravitational
interaction to external background curvature can be
determined in the same universal manner as coupling
of non-gravitational interactions is determined. Our
analysis shows that this is not true, and hence one can
not use the replacement m → m + Hint/c

2 when Hint

is the self-gravity of the system. Once again, such a
result could not have been guessed from qualitative
arguments alone and seems to be in conflict with the
results in [19]. Unlike non-gravitational interactions,
gravitational interactions are encoded in the geometry
of spacetime, and hence their coupling to the external
field is constrained by gravitational field equations.
Note that, unlike in [18, 19], our result is derived using
a proper solution of general relativity rather than in
the Newtonian limit and employs variables that are
covariantly defined. Even the “radial” coordinate r
is defined covariantly (and is the affine parameter
along retarded null geodesics). We would like to add
that, strictly speaking, the strong equivalence principle
holds when tidal effects can be ignored, and since the
violations we have arise from tidal terms, they are
not in conflict with the strong equivalence principle.
Nevertheless, it does highlight the non-trivial difference
between gravitational and non-gravitational interactions.
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Appendix A: Free particle Hamiltonian in curved
spacetime

We write the metric in Fermi normal coordinate [13,
20] near an accelerated curve γ with aµ are the compo-
nents of the acceleration vector and described by xα = 0.

g00 = −
(

1 +
2

c2
aµx

µ + (
aµx

µ

c4
)2 +R0µ0νx

µxν
)

+O(s3),

(A1)

g0µ = −2

3
R0αµβx

αxβ +O(s3), (A2)

gµν = δµν −
1

3
Rµανβx

αxβ +O(s3). (A3)

where the components of the Riemann tensor are eval-
uated on the curve γ. Here we write the point parti-
cle Hamiltonian(HFree) in the Fermi normal coordinates,
which is uplifted to the Hamiltonian for the composite
system using the center of mass degree of freedom. We
adopted the definition of the Hamiltonian H for a point
particle in FNC as H = −p0 ([9]), which can further be
written explicitly in terms of metric as,

H =
g0µpµc

g00
+

√
gµνpµpνc2 +m2c4

−g00
+

(
g0µpµc

g00

)2

(A4)

HFree −mc2 = +
2

3
R µ

0α βx
αxβpµc+

~p2

2m

(
1 +

aµx
µ

c2
+

15(aµx
µ)2

8c4
+
R0µ0νx

µxν

2

)
+
mc2

2

(
2aµx

µ

c2
+R0µ0νx

µxν
)

+
1

6
Rµ ν

α βx
αxβ

pµpν
m

(A5)

Hamiltonian H for a system whose internal dynamics are governed by the Hamiltonian Hint,

H = HFree +Hint(1− ~p2

2m2c2

(
1 +

aµx
µ

c2
+

15(aµx
µ)2

8c4
+
R0µ0νx

µxν

2

)
+

1

2

(
2aµx

µ

c2
+R0µ0νx

µxν
)

− 1

6
Rµ ν

α βx
αxβ

pµpν
m2c2

) (A6)

An infinitely small change in proper time can be written in terms of Fermi time as,

dτ = dt(1 +
aµx

µ

c2
+
R0µ0νx

µxν

2
− ~p2

2m2c2

(
1− aµx

µ

c2
+

(aµx
µ)2

2c4
− R0µ0νx

µxν

2

)
+

2

3
R0αµβ

xαxβpµ

mc

+
1

6
Rµ ν

α βx
αxβ

pµpν
m2c2

) (A7)
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